Pellegrino, S. Deployable constructions in engineering (Springer-Verlag, 2014).
You, Z. & Pellegrino, S. Foldable bar structures. Int. J. Solids Struct. 34, 1825-1847 (1997).
Liu, Y., Du, H., Liu, L. & Leng, J. Shape memory polymers and their composites in aerospace applications: an overview. Smart Mater. Struct. 23, 023001 (2014).
Puig, L., Barton, A. & Rando, N. An overview of highly deployable structures for astrophysical missions. Acta Astron. 67, 12-26 (2010).
Zhao, J.-S., Chu, F. & Feng, Z.-J. Mechanism theory and application of deployable structures based on SLE. Mech. Mach. Theory, 44, 324-335 (2009).
Mira, LA, Thrall, AP & De Temmerman, N. Deployable scissor arch for temporary shelters. Autom. Constr. 43, 123–131 (2014).
Thrall, AP, Adriaenssens, S., Paya-Zaforteza, I. & Zoli, TP Linkage-Based Movable Bridges: Design Methodology and Three New Shapes. Spooky. Struct. 37, 214-223 (2012).
Arnouts, ICN, Massart, TJ, De Temmerman, N. & Berke, P. Structural optimization of a bistable deployable scissors module. In Proc. IASS Annual Symposium 2019 – Structural Membranes 2019 (eds Lazaro, C. et al.) (2019).
García-Mora, CJ & Sánchez-Sánchez, J. Geometrical method to design bistable and non-bistable deployable structures of straight scissors based on the convergence surface. Mech. Mach. Theory 146, 103720 (2020).
Cadogan, D., Stein, J. & Grahne, M. Inflatable composite habitat structures for moon and Mars exploration. Acta Astron. 44, 399-406 (1999).
Block, J., Straubel, M. & Wiedemann, M. Ultra-light deployable booms for solar sails and other large gossamer structures in space. Acta Astron. 68, 984-992 (2011).
Sifert, E., Reyssat, E., Bico, J. & Roman, B. Programming of rigid inflatable shells of planar pattern fabrics. Soft matter 16, 7898-7903 (2020).
Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Bio-inspired pneumatic shape-forming elastomers. Wet. Mater. 18, 16692–16696 (2019).
Usevitch, NS et al. An unbound isoperimetric soft robot. Sci. Robot. 5, eaaz0492 (2020).
Skouras, M. et al. Designing Inflatable Structures. ACM Trans. Chart. 33, 63 (2014).
Rus, D. & Tolley, MT Design, manufacture and control of origami robots. Wet. Rev. Mater. 3, 101–112 (2018).
Onal, CD, Wood, RJ & Rus, D. An origami-inspired approach to worm robots. IEEE ASME Trans. Mechatron. 18, 430-438 (2013).
Onal, CD, Tolley, MT, Wood, RJ & Rus, D. Origami-inspired printed robots. IEEE ASME Trans. Mechatron. 20, 2214-2221 (2015).
Li, S. et al. A vacuum powered origami “magic ball” soft gripper. In International Conference on Robotics and Automation 2019 (ICRA) 7401–7408 (IEEE, 2019).
Miskin, MZ et al. Graphene-based bimorphs for micron-sized autonomous origami machines. Proc. Natl Acad. Sci. USA 115, 466-470 (2018).
Silverberg, JL et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647-650 (2014).
Dudte, LH, Vouga, E., Tachi, T. & Mahadevan, L. Programming curvature with origami planes. Wet. Mater. 15, 583-588 (2016).
Filipov, ET, Tachi, T. & Paulino, GH Origami tubes assembled into rigid, but reconfigurable structures and metamaterials. Proc. Natl Acad. Sci. USA 112, 12321-12326 (2015).
Overvelde, JTB, Weaver, JC, Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architectural materials. Nature 541, 347-352 (2017).
Iniguez-Rabago, A., Li, Y. & Overvelde, JTB Investigation of multistability in prismatic metamaterials by means of local activation. Wet. Common. 10, 5577 (2019).
Seymour, K. et al. Origami-Based Deployable Ballistic Barrier. In Proc. 7th International Meeting on Origami in Scientific Mathematics and Education 763-778 (2018).
Del Grosso, A. & Basso, P. Adaptive building of skin structures. Smart Mater. Struct. 19, 124011 (2010).
Tachi, T. in Origami 5 (eds Wang-Iverson, P. et al.) Ch. 20 (CRC Press, 2011).
Zirbel, SA et al. Suitable for thickness in origami-based deployable arrays. J. Mech. From. 135, 111005 (2013).
You, Z. & Cole, N. Self-locking bi-stable fold-out booms. In 47th AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics, and Materials Conference AIAA 2006-1685 (ARC, 2006); https://arc.aiaa.org/doi/abs/10.2514/6.2006-1685.
Lang., RJ A calculation algorithm for origami design. In Proc. 12th Annual ACM Symposium on Computational Geometry 98-105 (1996); https://ci.nii.ac.jp/naid/80009084712/en/.
Demaine, ED & Mitchell, JSB Achieving the folded state of a rectangular piece of paper. In Proc. 13th Canadian Conference on Computational Geometry (CCCG 2001) 73-75 (2001).
Demaine, ED & Tachi, T. Origamizer: A Practical Algorithm for Folding Any Polyhedron. In Proc. 33rd International Symposium on Computational Geometry (SoCG 2017) 34: 1-34: 15 (2017).
Martinez, RV, Fish, CR, Chen, X. & Whitesides, GM Elastomeric origami: Programmable paper elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376-1384 (2012).
Li, S., Vogt, DM, Rus, D. & Wood, RJ Fluid-powered origami-inspired artificial muscles. Proc. Natl Acad. Sci. USA 114, 13132-13137 (2017).
Kim, W. et al. Bioinspired dual-morphing stretchable origami. Sci. Robot. 4, eaay3493 (2019).
Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. & Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable and self-locking properties. Sci. Rep. 7, 46046 (2017).
Hanna, B., Lund, J., Lang, R., Magleby, S. & Howell, L. Waterbomb base: a symmetrical bistable single vertex origami mechanism. Smart Mater. Struct. 23, 094009 (2014).
Cai, J., Deng, X., Ya, Z., Jian, F. & Tu, Y. Bistable behavior of the Kresling pattern cylindrical origami structure. J. Mech. From. 137, 061406 (2015).
Silverberg, JL et al. Origami structures with a critical transition to bistability due to hidden degrees of freedom. Wet. Mater. 14, 389-393 (2015).
Waitukaitis, S., Menaut, R., Gin-ge Chen, B. & van Hecke, M. Origami multistability: from single vertices to meta sheets. Phys. Rev. Lett. 114, 055503 (2015).
Yasuda, H. & Yang, J. Reentrant origami-based metamaterials with negative Poisson ratio and bistability. Phys. Rev. Lett. 114185502 (2015).
Reid, A., Lechenault, F., Rica, S. & Adda-Bedia, M. Geometry and design of origami bellows with adjustable response. Phys. Rev.E 95, 013002 (2017).
Faber, JA, Arrieta, AF & Studart, AR Bio-inspired spring origami. Science 359, 1386-1391 (2018).
Dolciani, MP, Donnelly, AJ & Jurgensen, RC Modern geometry, structure and method (Houghton Mifflin, 1963).
Connelly, R. The stiffness of polyhedral surfaces. Math. Allowed. 52, 275-283 (1979).
Connelly, R., Sabitov, I. & Walz, A. The bellows conjecture. Pitch in. Algebr. Geom. 38, 1-10 (1997).
Mackenzie, D. Polyhedra Can Bend But Not Breathe. Science 279, 1637-1637 (1998).
Chen, Y., Feng, H., Ma, J., Peng, R. & You, Z. Symmetrical water bomb origami. Proc. R. Soc. A 472, 20150846 (2016).
Paulino, GH & Liu. K. Non-linear mechanics of non-rigid origami: an efficient computational approach. Proc. R. Soc. A 473, 20170348 (2017).