Entanglement on an optical atomic clock junction

  • 1.

    Ludlow, AD, Boyd, MM, Ye, J., Peik, E. & Schmidt, PO Optical atomic clocks. Rev. Mod. Phys. 87, 637-701 (2015).

    ADS CAS Google Scholar

  • 2.

    Ushijima, I., Takamoto, M., Das, M., Ohkubo, T. & Katori, H. Cryogenic lattice optical clocks. Wet. Photon. 9, 185-189 (2015).

    ADS CAS Google Scholar

  • 3.

    Oelker, E. et al. Demonstration of 4.8 × 10-17 stability at 1 s for two independent optical clocks. Wet. Photon. 13, 714-719 (2019).

    ADS CAS Google Scholar

  • 4.

    Schioppo, M. et al. Ultra-stable optical clock with two cold atom ensembles. Wet. Photon. 11, 48-52 (2017).

    ADS CAS Google Scholar

  • 5.

    Dick, GJ Local oscillator induced instabilities in stuck ion frequency standards. Report ADA502386 (California Institute of Technology, Pasadena Jet Propulsion Lab, 1987); https://apps.dtic.mil/sti/citations/ADA502386.

  • 6.

    Norcia, MA et al. Coherence on a seconds scale on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    ADS CAS PubMed Google Scholar

  • 7.

    Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the dick limit. Wet. Photon. 5, 288–292 (2011).

    ADS CAS Google Scholar

  • 8.

    Nicholson, TL et al. Comparison of two independent Sr optical clocks with 1 × 10-17 stability at 103 s. Phys. Rev. Lett. 109, 230801 (2012).

    ADS CAS PubMed Google Scholar

  • 9.

    Appel, J. et al .; Mesoscopic atomic entanglement for precision measurements outside the standard quantum boundary. Proc. Natl Acad. Sci. United States 106, 10960-10965 (2009).

    ADS CAS PubMed Google Scholar

  • 10.

    Takano, T., Fuyama, M., Namiki, R. & Takahashi, Y. Rotate the pinching of a cold atomic ensemble with the nuclear spin of one half. Phys. Rev. Lett. 102, 033601 (2009).

    ADS CAS PubMed Google Scholar

  • 11.

    Gross, C., Zibold, T., Nicklas, E., Esteve, J. & Oberthaler, MK Nonlinear atomic interferometer surpasses the classic precision limit. Nature 464, 1165-1169 (2010).

    ADS CAS PubMed Google Scholar

  • 12.

    Riedel, MF et al. Nuclear chip-based entanglement generation for quantum metrology. Nature 464, 1170-1173 (2010).

    ADS CAS PubMed Google Scholar

  • 13.

    Schleier-Smith, MH, Leroux, ID & Vuletić, V. Compressing the collective spin of a diluted atomic ensemble by cavity feedback. Phys. Rev. a 81, 021804 (2010).

    ADS Google Scholar

  • 14.

    Leroux ID, Schleier-Smith, MH & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    ADS PubMed Google Scholar

  • 15.

    Kruse, I. et al. Improvement of an atomic clock using compressed vacuum. Phys. Rev. Lett. 117, 143004 (2016).

    ADS CAS PubMed Google Scholar

  • 16.

    Pezzè, L., Smerzi, A., Oberthaler, MK, Schmied, R. & Treutlein, P. Quantum metrology with non-classical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    ADS MathSciNet Google Scholar

  • 17.

    Cox, KC, Greve, GP, Weiner, JM & Thompson, JK Deterministic pressed states with collective measurements and feedback. Phys. Rev. Lett. 116, 093602 (2016).

    ADS PubMed Google Scholar

  • 18.

    Hosten, O., Engels, NJ, Krishnakumar, R. & Kasevich, MA Measurement noise 100 times lower than the quantum projection limit when using entangled atoms. Nature 529, 505-508 (2016).

    ADS CAS PubMed MATH Google Scholar

  • 19.

    Bohnet, JG et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297-1301 (2016).

    ADS MathSciNet CAS PubMed MATH Google Scholar

  • 20.

    Braverman, B. et al. Near-unit spin squeezing in Yb 171. Phys. Rev. Lett. 122, 223203 (2019).

    ADS CAS PubMed Google Scholar

  • 21.

    Wcisło, P. et al. New limits to dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

    ADS PubMed PubMed Central Google Scholar

  • 22.

    Safronova, MS et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS MathSciNet CAS Google Scholar

  • 23.

    Safronova, MS The quest for variation of fundamental constants with clocks. Ann. Phys. 531, 1800364 (2019).

    Google scholar

  • 24.

    Lisdat, C. et al. A clock network for geodesy and fundamental science. Wet. Commun. 7, 12443 (2016).

    ADS CAS PubMed PubMed Central Google Scholar

  • 25.

    Grotti, J. et al .; Geodesy and metrology with a movable optical clock. Wet. Phys. 14, 437-441 (2018).

    CAS Google Scholar

  • 26.

    Takamoto, M. et al. Test of general relativity by a pair of movable optical lattice clocks. Wet. Photon. 14, 411-415 (2020).

    ADS CAS Google Scholar

  • 27.

    Kolkowitz, S. et al. Gravitational wave detection with optical lattice atom clocks. Phys. Rev.D 94, 124043 (2016).

    ADS Google Scholar

  • 28.

    Wineland, DJ, Bollinger, JJ, Itano, WM & Heinzen, DJ Pressed atomic states and projection noise in spectroscopy. Phys. Rev. a 50, 67-88 (1994).

    ADS CAS PubMed Google Scholar

  • 29.

    Kitagawa, M. & Ueda, M. Pressed spin states. Phys. Rev. a 47, 5138-5143 (1993).

    ADS CAS PubMed Google Scholar

  • 30.

    Hamley, CD, Gerving, C., Hoang, T., Bookjans, E. & Chapman, MS Spin-nematic compressed vacuum in a quantum gas. Wet. Phys. 8, 305–308 (2012).

    CAS Google Scholar

  • 31.

    Leroux, ID, Schleier-Smith, MH & Vuletić, V. Orientation-dependent entanglement in a pressed atomic clock. Phys. Rev. Lett. 104, 250801 (2010).

    ADS PubMed Google Scholar

  • 32.

    Wineland, DJ et al. Experimental problems in coherent manipulation of the quantum state of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259-328 (1998).

    CAS PubMed PubMed Central Google Scholar

  • 33.

    Braverman, B., Kawasaki, A. & Vuletić, V. Impact of non-unitary spin pinches on atomic clock performance. New J. Phys. 20, 103019 (2018).

    ADS Google Scholar

  • 34.

    Matei, DG et al. 1.5μm lasers with a line width of less than 10 MHz. Phys. Rev. Lett. 118, 263202 (2017).

    ADS CAS PubMed Google Scholar

  • 35.

    Hu, L., Poli, N., Salvi, L. & Tino, GM Atom interferometry with the Sr optical clock transition. Phys. Rev. Lett. 119, 263601 (2017).

    ADS PubMed Google Scholar

  • 36.

    Pospelov, M. et al. Detect domain walls of axion-like models using terrestrial experiments. Phys. Rev. Lett. 110, 021803 (2013).

    ADS CAS PubMed Google Scholar

  • 37.

    Riehle, F. Optical Clock Networks. Wet. Photon. 11, 25-31 (2017).

    ADS CAS Google Scholar

  • 38.

    Al-Masoudi, A., Dörscher, S., Häfner, S., Sterr, U. & Lisdat, C. Noise and instability of an optical lattice clock. Phys. Rev. a 92, 063814 (2015).

    ADS Google Scholar

  • 39.

    Kawasaki, A. et al. Geometrically asymmetric optical cavity for strong atom-photon coupling. Phys. Rev. a 99, 013437 (2019).

    ADS CAS Google Scholar

  • 40.

    Blatt, S. et al. Rabi spectroscopy and excitation inhomogeneity in a one-dimensional lattice optical clock. Phys. Rev. a 80, 052703 (2009).

    ADS Google Scholar

  • 41.

    Vallet, G. et al .; A noise immune cavity assisted nondestructive detection for an optical lattice clock in the quantum regime. New J. Phys. 19, 083002 (2017).

    ADS MathSciNet Google Scholar

  • 42.

    Yamoah, M. et al. Robust kHz linewidth divided Bragg reflector laser with optoelectronic feedback. Opt. to express 27, 37714-37720 (2019).

    ADS CAS PubMed Google Scholar

  • 43.

    Zhang, W. et al .; Residual amplitude modulation reduction to 1 × 10-6 for frequency modulation and laser stabilization. Opt. Lett. 39, 1980-1983 (2014).

    ADS CAS PubMed Google Scholar

  • 44.

    Śliwczyński, Ł., Krehlik, P., Czubla, A., Buczek, Ł. & Lipiński, M. Spreading time and RF frequency over a stabilized fiber optic link over a distance of 420 km. Metrologia 50, 133 (2013).

    ADS Google Scholar

  • 45.

    Lee, W. et al .; Ultra-stable, room-temperature optical cavity laser system with 4.8 x 10-17 thermal noise limit. In 2019 Joint Conference of the IEEE International Frequency Control Symposium and the European Frequency and Time Forum 1–2 (IEEE, 2019).

  • Source