Chromothripsis stimulates the evolution of gene amplification in cancer

  • 1.

    Benner, SE, Wahl, GM & Von Hoff, DD Double minute chromosomes and homogeneous staining regions in tumors taken directly from patients versus in human tumor cell lines. Medicines for cancer 2, 11-25 (1991).

    CAS PubMed article PubMed Central Google Scholar

  • 2.

    Turner, KM et al. Extrachromosomal oncogene amplification stimulates tumor evolution and genetic heterogeneity. Nature 543, 122-125 (2017).

    ADS CAS PubMed PubMed Central article Google Scholar

  • 3.

    Albertson, DG Gene Amplification in Cancer. Trends Genet. 22, 447-455 (2006).

    MathSciNet CAS PubMed article PubMed Central Google Scholar

  • 4.

    Alt, FW, Kellems, RE, Bertino, JR, & Schimke, RT Selective propagation of dihydrofolate reductase genes in methotrexate-resistant variants of cultured mouse cells. J. Biol. Chem. 253, 1357-1370 (1978).

    CAS PubMed PubMed Central Google Scholar

  • 5.

    Kaufman, RJ, Brown, PC, & Schimke, RT Amplified dihydrofolate reductase genes in unstable methotrexate resistant cells are associated with double minute chromosomes. Proc. Natl Acad. Sci. United States 765669-5673 (1979).

    ADS CAS PubMed article PubMed Central Google Scholar

  • 6.

    Nunberg, JH, Kaufman, RJ, Schimke, RT, Urlaub, G. & Chasin, LA Amplified dihydrofolate reductase genes are located in a homogeneous staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc. Natl Acad. Sci. United States 755553-5556 (1978).

    ADS CAS PubMed article PubMed Central Google Scholar

  • 7.

    Carroll, SM et al. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol. Cell. Biol. 8, 1525-1533 (1988).

    CAS PubMed PubMed Central article Google Scholar

  • 8.

    Ruiz, JC & Wahl, GM Chromosomal destabilization during gene amplification. Mol. Cell. Biol. 10, 3056-3066 (1990).

    CAS PubMed PubMed Central article Google Scholar

  • 9.

    Coquelle, A., Rozier, L., Dutrillaux, B. & Debatisse, M. Induction of multiple double-strand breaks within an hsr by meganuclease I-SceI expression or fragile site activation leads to double minute formation and other chromosomal rearrangements. Oncogene 21, 7671-7679 (2002).

    CAS PubMed article PubMed Central Google Scholar

  • 10.

    Nathanson, DA et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72-76 (2014).

    ADS CAS PubMed article Google Scholar

  • 11.

    The ICGC / TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Whole genome pan cancer analysis. Nature 578, 82–93 (2020).

  • 12.

    Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    ADS CAS PubMed PubMed Central article Google Scholar

  • 13.

    Cortes-Ciriano, I. et al. Extensive analysis of chromothripsis in 2,658 human cancers using whole genome sequencing. Night. Genet. 52, 331-341 (2020).

    CAS PubMed PubMed Central article Google Scholar

  • 14.

    Stephens, PJ et al. Massive genomic rearrangement obtained in a single catastrophic event during cancer development. Cell 144, 27-40 (2011).

    MathSciNet CAS PubMed PubMed Central article Google Scholar

  • 15.

    deCarvalho, AC et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Night. Genet. 50, 708-717 (2018).

    CAS PubMed PubMed Central article Google Scholar

  • 16.

    Verhaak, RGW, Bafna, V. & Mischel, PS Extrachromosomal oncogene amplification in tumor pathogenesis and evolution. Night. Rev. Cancer 19, 283–288 (2019).

    CAS PubMed PubMed Central article Google Scholar

  • 17.

    Rausch, T. et al. Pediatric medulloblastoma genome sequencing links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59-71 (2012).

    CAS PubMed PubMed Central article Google Scholar

  • 18.

    Nones, K. et al. Genomic catastrophes often occur in esophageal adenocarcinoma and cause tumorigenesis. Wet. Common. 5, 5224 (2014).

    ADS CAS PubMed PubMed Central article Google Scholar

  • 19.

    Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Night. Genet. 51, 705-715 (2019).

    CAS PubMed PubMed Central article Google Scholar

  • 20.

    Singer, MJ, Mesner, LD, Friedman, CL, Trask, BJ & Hamlin, JL Amplification of the human dihydrofolate reductase gene via double minutes is initiated by chromosome breaks. Proc. Natl Acad. Sci. United States 97, 7921-7926 (2000).

    ADS CAS PubMed article PubMed Central Google Scholar

  • 21.

    Windle, B., Draper, BW, Yin, YX, O’Gorman, S. & Wahl, GM A central role for chromosome breakage in gene amplification, deletion and amplicon integration. Genes Dev. 5160-174 (1991).

    CAS PubMed article PubMed Central Google Scholar

  • 22.

    McClintock, B. The stability of broken ends of chromosomes in Zea Mays. Genetics 26, 234-282 (1941).

    CAS PubMed PubMed Central Google Scholar

  • 23.

    Glodzik, D. et al. A somatic mutation process repeatedly duplicates germ-line susceptibility loci and tissue-specific super-enhancers in breast cancer. Night. Genet. 49, 341-348 (2017).

    CAS PubMed PubMed Central article Google Scholar

  • 24.

    Garsed, DW et al. The architecture and evolution of neochromosomes in cancer. Cancer Cell 26, 653-667 (2014).

    CAS PubMed article PubMed Central Google Scholar

  • 25.

    Landry, JJ et al. The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3, 1213-1224 (2013).

    Article CAS Google Scholar

  • 26.

    Zhang, CZ et al. Chromothripsis due to DNA damage in micronuclei. Nature 522, 179–184 (2015).

    ADS CAS PubMed PubMed Central article Google Scholar

  • 27.

    Yaeger, R. et al. Mechanisms of acquired resistance to BRAF V600E inhibition in colon cancer converge to RAF dimerization and are sensitive to its inhibition. Cancer Res. 77, 6513-6523 (2017).

    CAS PubMed PubMed Central article Google Scholar

  • 28.

    Ly, P. et al. Selective inactivation of Y centromere causes chromosome fragmentation into micronuclei and repair by non-homologous end junction. Wet. Cell Biol. 19, 68-75 (2017).

    CAS PubMed article PubMed Central Google Scholar

  • 29.

    Shimizu, N., Hashizume, T., Shingaki, K. & Kawamoto, JK Amplification of plasmids containing a mammalian replication initiation region is mediated by a controllable conflict between replication and transcription. Cancer Res. 63, 5281-5290 (2003).

    CAS PubMed PubMed Central Google Scholar

  • 30.

    Maciejowski, J., Li, Y., Bosco, N., Campbell, PJ & de Lange, T. Chromothripsis and kataegis caused by telomere crisis. Cell 163, 1641-1654 (2015).

    CAS PubMed PubMed Central article Google Scholar

  • 31.

    Hoffelder, DR et al. Resolution of anaphase bridges in cancer cells. Chromosome 112, 389-397 (2004).

    PubMed article Google Scholar

  • 32.

    Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, RA DNA repair pathways as targets for cancer therapy. Night. Rev. Cancer 8, 193–204 (2008).

    CAS PubMed article Google Scholar

  • 33.

    Cermak, T. et al .; Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    CAS PubMed PubMed Central article Google Scholar

  • 34.

    Fachinetti, D. et al. DNA sequence-specific binding of CENP-B improves the fidelity of human centromere function. The V. Cell 33, 314-327 (2015).

    CAS PubMed PubMed Central article Google Scholar

  • 35.

    Schindelin, J. et al .; Fiji: An Open Source Platform for Biological Image Analysis. Wet. Methods 9, 676-682 (2012).

    CAS PubMed PubMed Central article Google Scholar

  • 36.

    Ou, HD et al. ChromEMT: Visualization of 3D chromatin structure and densification in interphase and mitotic cells. Science 357, eaag0025 (2017).

    PubMed PubMed Central Article CAS Google Scholar

  • 37.

    Ou, HD, Deerinck, TJ, Bushong, E., Ellisman, MH & O’Shea, CC Visualization of viral protein structures in cells using genetic probes for correlated light and electron microscopy. Methods 90, 39-48 (2015).

    CAS PubMed PubMed Central article Google Scholar

  • 38.

    Rao, SS et al. A 3D map of the human genome at kilobase resolution reveals the principles of chromatin looping. Cell 159, 1665-1680 (2014).

    CAS PubMed PubMed Central article Google Scholar

  • 39.

    Li, H. & Durbin, R. Fast and accurate alignment of long reads with Burrows-Wheeler transformation. Bioinformatics 26589-595 (2010).

    PubMed PubMed Central Article CAS Google Scholar

  • 40.

    Raine, KM et al. AscatNgs: Identification of somatically acquired copy number changes based on whole genome sequence data. Current. Protoc. Bioinformatics 56, 15.9.1 – 15.9.17 (2016).

    Article Google Scholar

  • 41.

    Nik-Zainal, S. et al. Landscape of somatic mutations in 560 whole breast cancer genome sequences. Nature 534, 47-54 (2016).

    ADS CAS PubMed PubMed Central article Google Scholar

  • 42.

    Korbel, JO & Campbell, PJ Criteria for chromothripsis inference in cancer genomes. Cell 152, 1226-1236 (2013).

    CAS PubMed article PubMed Central Google Scholar

  • 43.

    Li, Y. et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukemia. Nature 508, 98-102 (2014).

    ADS CAS PubMed PubMed Central article Google Scholar

  • 44.

    Alexandrov, LB, Nik-Zainal, S., Wedge, DC, Campbell, PJ & Stratton, MR Deciphering signatures of mutational processes active in human cancer. Cell Rep. 3, 246-259 (2013).

    CAS PubMed PubMed Central article Google Scholar

  • Source