A quantum enhanced search for dark matter axions

  • 1.

    Slusher, RE, Hollberg, LW, Yurke, B., Mertz, JC & Valley, JF Observation of compressed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett 552409-2412 (1985).

    ADS CAS article Google Scholar

  • 2.

    Tse, M. et al. Quantum-enhanced Advanced LIGO Detectors in the Age of Gravitational Wave Astronomy. Phys. Rev. Lett 123, 231107 (2019).

    ADS CAS article Google Scholar

  • 3.

    Brubaker, BM et al. Initial results of an axion study in the microwave cavity at 24 μeV. Phys. Rev. Lett 118, 061302 (2017).

    ADS CAS article Google Scholar

  • 4.

    Peccei, RD & Quinn, HR CP Preservation in the Presence of Pseudoparticles. Phys. Rev. Lett 38, 1440-1443 (1977).

    ADS CAS article Google Scholar

  • 5.

    Preskill, J., Wise, MB, & Wilczek, F. Cosmology of the Invisible Axion. Phys. Lett. B. 120, 127-132 (1983).

    ADS article Google Scholar

  • 6.

    Dine, M. & Fischler, W. The not so harmless axion. Phys. Lett. B. 120, 137-141 (1983).

    ADS article Google Scholar

  • 7.

    Abbott, L. & Sikivie, P. A cosmological bondage to the invisible axion. Phys. Lett. B. 120, 133-136 (1983).

    ADS article Google Scholar

  • 8.

    Braine, T. et al. Extensive search for the invisible axion with the axion dark matter experiment. Phys. Rev. Lett 124, 101303 (2020).

    ADS CAS article Google Scholar

  • 9.

    Malnou, M. et al. Compressed vacuum used to accelerate the search for a weak classical signal. Phys. Rev. X 9, 021023 (2019).

    Google Scholar CAS

  • 10.

    Buschmann, M., Foster, JW & Safdi, BR Early universe simulations of the cosmological axion. Phys. Rev. Lett 124, 161103 (2020).

    ADS CAS article Google Scholar

  • 11.

    Klaer, VB & Moore, GD The axion mass of dark matter. J. Cosmol. Astropart. Phys 2017, 049 (2017).

    Article Google Scholar

  • 12.

    Ade, PA et al. Planck 2015 results – XIII. Cosmological parameters. Astron. Astrophys 594, A13 (2016).

    Article Google Scholar

  • 13.

    Bertone, G. & Tait, TMP A new era in the search for dark matter. Nature 562, 51-56 (2018).

    ADS CAS article Google Scholar

  • 14.

    Ouellet, JL et al. Initial results of ABRACADABRA-10 cm: a dark matter search of sub-μev axion. Phys. Rev. Lett 122, 121802 (2019).

    ADS CAS article Google Scholar

  • 15.

    Majorovits, B. et al. Madmax: a new path to axionic dark matter detection. J. Phys. Conf. Ser 1342, 012098 (2020).

    Article Google Scholar

  • 16.

    Arvanitaki, A. & Geraci, AA Resonant detection of axion-mediated forces with nuclear magnetic resonance. Phys. Rev. Lett 113, 161801 (2014).

    ADS article Google Scholar

  • 17.

    Garcon, A. et al. The cosmic axion spin precession experiment (CASPEr): a nuclear magnetic resonance dark matter search. Quantum Sci. Technol 3, 014008 (2018).

    ADS article Google Scholar

  • 18.

    Zhong, L. et al. Results from Phase 1 of the HAYSTAC Axion Microwave Experiment. Phys. Rev.D 97, 092001 (2018).

    ADS CAS article Google Scholar

  • 19.

    Lee, S., Ahn, S., Choi, J., Ko, BR & Semertzidis, YK Axion dark matter search around 6.7 μeV. Phys. Rev. Lett 124, 101802 (2020).

    ADS CAS article Google Scholar

  • 20.

    Sikivie, P. Experimental tests of the “invisible” axion. Phys. Rev. Lett 51, 1415-1417 (1983).

    ADS CAS article Google Scholar

  • 21.

    Rapidis, NM, Lewis, SM & van Bibber, K. Characterization of the HAYSTAC axion dark matter search cavity using microwave measurement and simulation techniques. Rev. Sci. Instrum 90, 024706 (2019).

    ADS article Google Scholar

  • 22.

    Caves, CM, Thorne, KS, Drever, RWP, Sandberg, VD & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum mechanical oscillator. I. Issues of principle. Rev. Mod. Phys 52, 341-392 (1980).

    ADS article Google Scholar

  • 23.

    Palken, DA et al. Improved analysis framework for dark matter searches in axions. Phys. Rev.D 101, 123011 (2020).

    ADS CAS article Google Scholar

  • 24.

    Kim, JE Singlet with weak interaction and strong CP invariance. Phys. Rev. Lett 43, 103-107 (1979).

    ADS CAS article Google Scholar

  • 25.

    Shifman, MA, Vainshtein, AI & Zakharov, VI Can of course guarantee confinement CP immutability of strong interactions? Nucl. Phys. B. 166, 493-506 (1980).

    ADS article Google Scholar

  • 26.

    Gorghetto, M., Hardy, E. & Villadoro, G. Axions of strings: the attractive solution. J. High Energy Phys 2018, 151 (2018).

    Article Google Scholar

  • 27.

    Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett 93042510 (2008).

    ADS article Google Scholar

  • 28.

    Primakoff, H. Photoproduction of neutral mesons in nuclear electric fields and the mean lifetime of the neutral meson. Phys. Rev 81, 899 (1951).

    ADS CAS article Google Scholar

  • 29.

    Al Kenany, S. et al. Design and operational experience of a microwave axion detector for the 20 – 100 μeV range. Nucl. Instrum. Methods Phys. Res. A 854, 11–24 (2017).

    ADS CAS article Google Scholar

  • 30.

    Caves, CM Quantum reduces noise in linear amplifiers. Phys. Rev.D 26, 1817-1839 (1982).

    ADS article Google Scholar

  • 31.

    Malnou, M., Palken, DA, Vale, LR, Hilton, GC & Lehnert, KW Optimal operation of a Josephson parametric vacuum squeeze amplifier. Phys. Rev. Appl 9, 044023 (2018).

    ADS CAS article Google Scholar

  • 32.

    Brubaker, BM, Zhong, L., Lamoreaux, SK, Lehnert, KW & van Bibber, KA HAYSTAC axion search analysis procedure. Phys. Rev.D 96, 123008 (2017).

    ADS article Google Scholar

  • 33.

    Burkhart, LD et al. Error-detected state transfer and entanglement in a superconducting quantum network. Preprint at https://arxiv.org/abs/2004.06168 (2020).

  • 34.

    Braunstein, SL & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys 77, 513-577 (2005).

    ADS MathSciNet article Google Scholar

  • 35.

    Tanabashi, M. et al. Review of particle physics. Phys. Rev.D 98, 030001 (2018).

    ADS article Google Scholar

  • 36.

    Di Luzio, L., Giannotti, M., Nardi, E. & Visinelli, L. The landscape of QCD axion models. Phys. Rep 870, 1-117 (2020).

    ADS MathSciNet article Google Scholar

  • 37.

    Dine, M., Fischler, W. & Srednicki, M. A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B. 104, 199–202 (1981).

    ADS article Google Scholar

  • 38.

    Zhitnitsky, AR On possible suppression of the axion-hadron interactions. Sov. J. Nucl. Phys 31, 260 (1980).

    Google scholar

  • 39.

    Palken, DA Scan speed improvement for Axion Dark Matter: Quantum Noise Evasion and maximum informational analysisDissertation, Univ. from Colorado Boulder (2020).

  • Source