Slusher, RE, Hollberg, LW, Yurke, B., Mertz, JC & Valley, JF Observation of compressed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett 552409-2412 (1985).
Tse, M. et al. Quantum-enhanced Advanced LIGO Detectors in the Age of Gravitational Wave Astronomy. Phys. Rev. Lett 123, 231107 (2019).
Brubaker, BM et al. Initial results of an axion study in the microwave cavity at 24 μeV. Phys. Rev. Lett 118, 061302 (2017).
Peccei, RD & Quinn, HR CP Preservation in the Presence of Pseudoparticles. Phys. Rev. Lett 38, 1440-1443 (1977).
Preskill, J., Wise, MB, & Wilczek, F. Cosmology of the Invisible Axion. Phys. Lett. B. 120, 127-132 (1983).
Dine, M. & Fischler, W. The not so harmless axion. Phys. Lett. B. 120, 137-141 (1983).
Abbott, L. & Sikivie, P. A cosmological bondage to the invisible axion. Phys. Lett. B. 120, 133-136 (1983).
Braine, T. et al. Extensive search for the invisible axion with the axion dark matter experiment. Phys. Rev. Lett 124, 101303 (2020).
Malnou, M. et al. Compressed vacuum used to accelerate the search for a weak classical signal. Phys. Rev. X 9, 021023 (2019).
Buschmann, M., Foster, JW & Safdi, BR Early universe simulations of the cosmological axion. Phys. Rev. Lett 124, 161103 (2020).
Klaer, VB & Moore, GD The axion mass of dark matter. J. Cosmol. Astropart. Phys 2017, 049 (2017).
Ade, PA et al. Planck 2015 results – XIII. Cosmological parameters. Astron. Astrophys 594, A13 (2016).
Bertone, G. & Tait, TMP A new era in the search for dark matter. Nature 562, 51-56 (2018).
Ouellet, JL et al. Initial results of ABRACADABRA-10 cm: a dark matter search of sub-μev axion. Phys. Rev. Lett 122, 121802 (2019).
Majorovits, B. et al. Madmax: a new path to axionic dark matter detection. J. Phys. Conf. Ser 1342, 012098 (2020).
Arvanitaki, A. & Geraci, AA Resonant detection of axion-mediated forces with nuclear magnetic resonance. Phys. Rev. Lett 113, 161801 (2014).
Garcon, A. et al. The cosmic axion spin precession experiment (CASPEr): a nuclear magnetic resonance dark matter search. Quantum Sci. Technol 3, 014008 (2018).
Zhong, L. et al. Results from Phase 1 of the HAYSTAC Axion Microwave Experiment. Phys. Rev.D 97, 092001 (2018).
Lee, S., Ahn, S., Choi, J., Ko, BR & Semertzidis, YK Axion dark matter search around 6.7 μeV. Phys. Rev. Lett 124, 101802 (2020).
Sikivie, P. Experimental tests of the “invisible” axion. Phys. Rev. Lett 51, 1415-1417 (1983).
Rapidis, NM, Lewis, SM & van Bibber, K. Characterization of the HAYSTAC axion dark matter search cavity using microwave measurement and simulation techniques. Rev. Sci. Instrum 90, 024706 (2019).
Caves, CM, Thorne, KS, Drever, RWP, Sandberg, VD & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum mechanical oscillator. I. Issues of principle. Rev. Mod. Phys 52, 341-392 (1980).
Palken, DA et al. Improved analysis framework for dark matter searches in axions. Phys. Rev.D 101, 123011 (2020).
Kim, JE Singlet with weak interaction and strong CP invariance. Phys. Rev. Lett 43, 103-107 (1979).
Shifman, MA, Vainshtein, AI & Zakharov, VI Can of course guarantee confinement CP immutability of strong interactions? Nucl. Phys. B. 166, 493-506 (1980).
Gorghetto, M., Hardy, E. & Villadoro, G. Axions of strings: the attractive solution. J. High Energy Phys 2018, 151 (2018).
Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett 93042510 (2008).
Primakoff, H. Photoproduction of neutral mesons in nuclear electric fields and the mean lifetime of the neutral meson. Phys. Rev 81, 899 (1951).
Al Kenany, S. et al. Design and operational experience of a microwave axion detector for the 20 – 100 μeV range. Nucl. Instrum. Methods Phys. Res. A 854, 11–24 (2017).
Caves, CM Quantum reduces noise in linear amplifiers. Phys. Rev.D 26, 1817-1839 (1982).
Malnou, M., Palken, DA, Vale, LR, Hilton, GC & Lehnert, KW Optimal operation of a Josephson parametric vacuum squeeze amplifier. Phys. Rev. Appl 9, 044023 (2018).
Brubaker, BM, Zhong, L., Lamoreaux, SK, Lehnert, KW & van Bibber, KA HAYSTAC axion search analysis procedure. Phys. Rev.D 96, 123008 (2017).
Burkhart, LD et al. Error-detected state transfer and entanglement in a superconducting quantum network. Preprint at https://arxiv.org/abs/2004.06168 (2020).
Braunstein, SL & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys 77, 513-577 (2005).
Tanabashi, M. et al. Review of particle physics. Phys. Rev.D 98, 030001 (2018).
Di Luzio, L., Giannotti, M., Nardi, E. & Visinelli, L. The landscape of QCD axion models. Phys. Rep 870, 1-117 (2020).
Dine, M., Fischler, W. & Srednicki, M. A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B. 104, 199–202 (1981).
Zhitnitsky, AR On possible suppression of the axion-hadron interactions. Sov. J. Nucl. Phys 31, 260 (1980).
Google scholar
Palken, DA Scan speed improvement for Axion Dark Matter: Quantum Noise Evasion and maximum informational analysisDissertation, Univ. from Colorado Boulder (2020).